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NumPy Review for Time Series

Exercise:

1. Create a NumPy array with 50 evenly spaced values from 0 to 10 (inclusive). What is the shape and 

dtype?

2.  Given the array `arr = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])`:

Extract the first 5 elements

Extract elements from index 3 to 7 (inclusive)

Extract every other element starting from index 0

3. Create two arrays: `a = np.array([1, 2, 3])` and `b = np.array([10, 20, 30])`. 

Add them elementwise

Multiply them elementwise

What happens if you try `a + 5`? (Broadcasting)

4. Create a time series array with 100 daily values starting from January 1, 2020. Use ̀ np.arange()` to 

create day numbers (0 to 99), then create values as `100 + 2day + np.random.normal(0, 5, 100)`. What 

is the mean and standard deviation?

NumPy arrays
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NumPy Review for Time Series

NumPy Operations for Time Series

General representation of time series data:

(1)
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NumPy Review for Time Series

NumPy Operations for Time Series

Time-series decomposition:

(2)
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NumPy Review for Time Series

NumPy Operations for Time Series

Forecasting formulation:

(3)
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NumPy Review for Time Series

NumPy Operations for Time Series

Multivariate time series:

(4)
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NumPy Review for Time Series

NumPy Operations for Time Series

Scrolling (Sliding) Window Idea:

Choose a window size k (e.g., k = 10)

Slide the window one step at a time along the series

At each position t, compute         using the formula (5)

This produces a new, shorter series of smoothed values

# Rolling window calculation (manual)

window_size = 10

Kernel = np.ones(window_size)/window_size,

rolling_mean = np.convolve(values, kernel, mode =. 

Valid)
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NumPy Review for Time Series

NumPy Operations for Time Series

Simple Moving Average (SMA) over a window of size k:

(5)

This averages the most recent k points                                                  to smooth shortterm 

fluctuations.

k = window size

Larger k → smoother curve
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Pandas for Time Series

Pandas for Time Series

AirPassengers dataset

Dataset Description:

● Monthly airline passenger numbers (1949–1960)

● Univariate time series

● Clear trend and seasonality

● Widely used benchmark dataset in Time-series 

analysis

from statsmodels.datasets import get_rdataset

import pandas as pd

# Load AirPassengers dataset

data = get_rdataset('AirPassengers', 'datasets')

df = data.data

# Convert to Pandas Series with datetime index

ts = pd.Series(df['value'].values,

index=pd.date_range('1949-01', periods=len(df), freq='M'))

print(ts.head())

print(ts.info())
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Pandas for Time Series

Pandas for Time Series

AirPassengers dataset

Time Indexing and Slicing:

● Datebased indexing

● Subsetting by year or date range

● Shifting the time series

● Differencing for trend removal

# Datebased indexing

ts_1950 = ts['1950']  # All data from 1950

ts_1950_1955 = ts['1950':'1955']  # Date range

# Shifting

ts_lag1 = ts.shift(1)  # Shift by 1 period

# Differencing (removes trend)

ts_diff = ts.diff()  # First difference
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Pandas for Time Series

Pandas for Time Series

● Resampling:

○ Change frequency of observations

○ Aggregate data for analysis

○ Align multiple time series

○ Types:

■ Downsampling: Reduce frequency (e.g., daily → monthly)

■ Upsampling: Increase frequency (e.g., monthly → daily)

■ Common Frequencies:

'D' (daily), 'W' (weekly), 'M' (monthly), 'Q' (quarterly), 'Y' (yearly)

■ Aggregation Functions:

`mean()`, `sum()`, `last()`, `first()`, `max()`, `min()`



Trong-Nghia Nguyen 15Time-series

Pandas for Time Series

Pandas for Time Series

● Resampling AirPassengers

○ Monthly to yearly aggregation

○ Effect of resampling on trend and variance

○ Visual comparison of different frequencies

# Monthly to yearly aggregation

yearly = ts.resample('Y').mean()  # Yearly mean

yearly_sum = ts.resample('Y').sum()  # Yearly sum

# Visual comparison

import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 1, figsize=(12, 8))

axes[0].plot(ts.index, ts.values, label='Monthly')

axes[0].set_title('Monthly AirPassengers')

axes[1].plot(yearly.index, yearly.values, label='Yearly Mean')

axes[1].set_title('Yearly Aggregated AirPassengers')

plt.tight_layout()

plt.show()
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Pandas for Time Series

Pandas for Time Series

● Rolling Statistics with Pandas

○ Rolling mean

○ Rolling standard deviation

○ Effect of window size (3, 6, 12)

○ Connection to NumPy sliding window
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Pandas for Time Series

Pandas for Time Series

● Rolling Statistics with Pandas

# Rolling statistics

ts_rolling_mean_12 = ts.rolling(window=12).mean() # 12month rolling mean

ts_rolling_std_12 = ts.rolling(window=12).std()  # 12month rolling std

# Different window sizes

ts_rolling_3 = ts.rolling(window=3).mean()

ts_rolling_6 = ts.rolling(window=6).mean()

ts_rolling_12 = ts.rolling(window=12).mean()

# Visualization

plt.figure(figsize=(12, 6))

plt.plot(ts.index, ts.values, label='Original', alpha=0.5)

plt.plot(ts_rolling_3.index, ts_rolling_3.values, label='3month MA')

plt.plot(ts_rolling_6.index, ts_rolling_6.values, label='6month MA')

plt.plot(ts_rolling_12.index, ts_rolling_12.values, label='12month MA')

plt.legend()

plt.title('Rolling Mean with Different Window Sizes')

plt.show()
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Technical Indicators and EDA

From SMA to EMA

● Simple Moving Average (SMA): Equal weights for all observations in window.

● Exponential Moving Average (EMA): More weight to recent observations

Where α = 2 / (n + 1)

(6)

(7)

EMA is more responsive to recent changes

SMA is smoother but less reactive
Smoothing any time series data
Trend detection in various domains
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Technical Indicators and EDA

From SMA to EMA

# SMA

sma_12 = ts.rolling(window=12).mean()

# EMA

ema_12 = ts.ewm(span=12, adjust=False).mean()

# Comparison plot

plt.figure(figsize=(12, 6))

plt.plot(ts.index, ts.values, label='Original', 

alpha=0.3)

plt.plot(sma_12.index, sma_12.values, label='SMA(12)')

plt.plot(ema_12.index, ema_12.values, label='EMA(12)')

plt.legend()

plt.title('SMA vs EMA Comparison')

plt.show()
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Technical Indicators and EDA

Moving Average Convergence Divergence (MACD) Indicator

● Components:

○ Fast EMA (typically 12 periods)

○ Slow EMA (typically 26 periods)

○ MACD line = Fast EMA  Slow EMA

○ Signal line = EMA(9) of MACD line

● Interpretation:

○ Momentum indicator

○ MACD > Signal: Bullish momentum

○ MACD < Signal: Bearish momentum
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Technical Indicators and EDA

MACD Indicator
# Calculate MACD

ema_fast = ts.ewm(span=12, adjust=False).mean()

ema_slow = ts.ewm(span=26, adjust=False).mean()

macd_line = ema_fast - ema_slow

signal_line = macd_line.ewm(span=9, adjust=False).mean()

histogram = macd_line - signal_line

# Visualization

fig, axes = plt.subplots(2, 1, figsize=(12, 8), sharex=True)

axes[0].plot(ts.index, ts.values, label='AirPassengers')

axes[0].set_title('AirPassengers with EMAs')

axes[0].legend()

axes[1].plot(macd_line.index, macd_line.values, label='MACD')

axes[1].plot(signal_line.index, signal_line.values, label='Signal')

axes[1].bar(histogram.index, histogram.values, alpha=0.3, label='Histogram')

axes[1].axhline(y=0, color='black', linestyle=‘--')

axes[1].set_title('MACD Indicator')

axes[1].legend()

plt.tight_layout()

plt.show()
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Technical Indicators and EDA

Relative Strength Index (RSI) Indicator 

● Relative Strength Index (RSI):

○ Momentum oscillator measuring speed and magnitude of changes

○ Formula: RSI = 100  (100 / (1 + RS))

Where RS = Average Gain / Average Loss (over n periods)

● Calculation:

○ Gains and losses over a window (typically 14 periods)

○ Separates positive and negative price changes

● Interpretation:

○ RSI > 70: Overbought (potential reversal)

○ RSI < 30: Oversold (potential reversal)

○ RSI = 50: Neutral

● NonFinancial Illustration Purpose:

○ Demonstrates momentum concepts applicable to any time series

○ Useful for identifying extreme values in any domain



Trong-Nghia Nguyen 24Time-series

Technical Indicators and EDA

RSI Indicator (Conceptual)

def calculate_rsi(data, window=14):

delta = data.diff()

gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()

loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()

rs = gain / loss

rsi = 100 - (100 / (1 + rs))

return rsi

rsi = calculate_rsi(ts, window=14)

# Visualization

plt.figure(figsize=(12, 6))

plt.plot(rsi.index, rsi.values, label='RSI')

plt.axhline(y=70, color='r', linestyle=‘--', label='Overbought (70)')

plt.axhline(y=30, color='g', linestyle=‘--', label='Oversold (30)')

plt.fill_between(rsi.index, 70, 100, alpha=0.2, color='red')

plt.fill_between(rsi.index, 0, 30, alpha=0.2, color='green')

plt.ylim(0, 100)

plt.title('RSI Indicator')

plt.legend()

plt.show()
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Technical Indicators and EDA

Exploratory Data Analysis (EDA)

● Line plot of the series

● Seasonal patterns identification

● Rolling mean and variance analysis

● Trend–seasonality decomposition

● Excercise: proceed EDA with AirPassengers dataset
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Thank you!
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