Time-series,
Spring, 2026

Python & Time Series Fundamentals

Faculty of DS & Al
Spring semester, 2026

Trong-Nghia Nguyen

@1 Business Al Lab

Content

e NumPy Review for Time Series
e Pandas for Time Series
e Technical Indicators and EDA

Time-series Trong-Nghia Nguyen

Content

e NumPy Review for Time Series
e Pandas for Time Series
e J[echnical Indicators and EDA

Time-series Trong-Nghia Nguyen

NumPy Review for Time Series
NumPy arrays

Exercise:
1. Create a NumPy array with 50 evenly spaced values from 0 to 10 (inclusive). What is the shape and

dtype?

2. Given the array "arr = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])":
Extract the first 5 elements
Extract elements from index 3 to 7 (inclusive)
Extract every other element starting from index 0O
3. Create two arrays: "a = np.array([1, 2, 3]) and b = np.array([10, 20, 30]) .
Add them elementwise
Multiply them elementwise
What happens if you try "a + 5°? (Broadcasting)

4. Create a time series array with 100 daily values starting from January 1, 2020. Use 'np.arange() to
create day numbers (0 to 99), then create values as 100 + 2day + np.random.normal(0, 5, 100)". What
is the mean and standard deviation?

Time-series Trong-Nghia Nguyen

NumPy Review for Time Series
NumPy Operations for Time Series

General representation of time series data:

X={z,eRt=1,2, . T} o

X: the complete time-series dataset

t: time index

T: total number of observed time steps

X¢. feature vector at time step t

d: dimensionality of the feature space

RY: d-dimensional real-valued space

Interpretation:

The time series is modeled as a sequence of d-dimensional observations indexed by time.

Time-series Trong-Nghia Nguyen

NumPy Review for Time Series
NumPy Operations for Time Series

Time-series decomposition:
Ti=T4++S4T+C4T€4 @

e Xi: observed value at time step t

* T: (trend): long-term progression of the series
e s; (seasonality): repeating patterns with a fixed period
e ¢ (cyclic component): non-periodic, long-term oscillations

e & (noise): random fluctuations or unexplained residuals

Interpretation:

Each observation is decomposed into interpretable structural components plus random noise.

Time-series Trong-Nghia Nguyen

NumPy Review for Time Series

NumPy Operations for Time Series

Forecasting formulation:

@tJrl:f(xt?mt—l?wmt—k) (3)

Xi+1: predicted value at the next time step
f(-): forecasting function (e.g., ARIMA, LSTM, Transformer)
k: look-back window size

X:-;: historical observations used for prediction

Interpretation:

Future values are estimated based on a finite window of past observations.

Time-series

Trong-Nghia Nguyen

NumPy Review for Time Series
NumPy Operations for Time Series

Multivariate time series:

Xt: observation vector at time step t

vi": the i-th variable at time step t

p—t
™
-

m: number of variables (features or channels)

T: number of time steps

) X e RT"™: time-feature matrix representation of the dataset

1) (m) Interpretation:
{ | (4) The time series is represented as a matrix, where rows correspond to time steps and columns correspond

to variables.

Time-series Trong-Nghia Nguyen

NumPy Review for Time Series
NumPy Operations for Time Series

1 2 3 4 5 6 7 8 9 10

Scrolling (Sliding) Window Idea:

Input Window Forecast Horizon
Choose a window size k (e.g., k = 10)

1 2 3 4 5 6 7 8 9 10

Slide the window one step at a time along the series

Input Window Forecast Horizon

At each position t, compute :I:tusing the formula (5)

1 2 3 4 5 6 7 8 9 10

This produces a new, shorter series of smoothed values
Input Window Forecast Horizon

Rolling window calculation (manual)

1 2 3 4 5 6 7 8 9 10

window size = 10

Kernel = np.ones(window size) /window_size, Input Window Forecast Horizon
rolling mean = np.convolve(values, kernel, mode =.

Valid)

Time-series Trong-Nghia Nguyen

NumPy Review for Time Series
NumPy Operations for Time Series

Simple Moving Average (SMA) over a window of size k:

k = window size

Larger k — smoother curve

This averages the most recent k points L¢, L¢_1,... 4, Lt_k+1 to smooth shortterm
fluctuations.

Time-series Trong-Nghia Nguyen

Content

e NumPy Review for Time Series
e Pandas for Time Series
e J[echnical Indicators and EDA

Time-series Trong-Nghia Nguyen

Pandas for Time Series
Pandas for Time Series

" Data Chart

>

Dataset Description:
e Monthly airline passenger numbers (1949-1960)

Airline Passengers: Classic Monthly Trend & Seasonality (1949-1960)
e Univariate time series
e Clear trend and seasonality
o

M
Widely used benchmark dataset in Time-series b i \/\/ \/\-/\

1549 1951 1953 1955 1957 1959
Year

assengers (Thowsands)
- ~ ~N
! e
g &8 B

g

P

ol

+

Tr

Component Compone

from statsmodels.datasets import get_rdataset

Seasornd

import pandas as pd

Load AirPassengers dataset

data = get_rdataset('AirPassengers', 'datasets') AirPassengerS dataset

df = data.data

Convert to Pandas Series with datetime index
ts = pd.Series (df['value'] .values,

index=pd.date_range('1949-01', periods=len(df), fregq='M'"))
print(ts.head())

print(ts.info())

Trong-Nghia Nguyen

Time-series

Pandas for Time Series
Pandas for Time Series

" Data Charnt

Airline Passengers: Classic Monthly Trend & Seasonality (1949-1960)

Time Indexing and Slicing: 3000
e Datebased indexing

A
5 A
e Subsetting by year or date range oo \-/‘\ / \/\/j\/
e Shifting the time series £ o A \/ \/_/
e Differencing for trend removal 500 /\/\/\/ \/

/ \/ ./ \/ \/ . / \/ /
1549 1951 1953 1955 1957 1959

P

-
=
-
<
g

-

v
Component Compon

Datebased indexing 3

ts 1950 = ts['1950'] # All data from 1950

ts 1950 1955 = ts['1950':'1955'] # Date range .
- T AirPassengers dataset

Shifting

ts lagl = ts.shift(l) # Shift by 1 period

Differencing (removes trend)

ts diff = ts.diff() # First difference

Trong-Nghia Nguyen

Time-series

Pandas for Time Series

Pandas for Time Series

e Resampling:
o Change frequency of observations
o Aggregate data for analysis
o Align multiple time series
o Types:
m Downsampling: Reduce frequency (e.g., daily — monthly)
m Upsampling: Increase frequency (e.g., monthly — daily)
m Common Frequencies:
'D' (daily), 'W' (weekly), 'M' (monthly), 'Q' (quarterly), 'Y' (yearly)
m Aggregation Functions:
‘mean()’, ‘sum()’, ‘last()’, first()’, ‘max()’, ‘min()

Trong-Nghia Nguyen

Time-series

Pandas for Time Series

Pandas for Time Series

e Resampling AirPassengers
o Monthly to yearly aggregation
o Effect of resampling on trend and variance
o Visual comparison of different frequencies

Monthly to yearly aggregation
yearly = ts.resample('Y').mean() # Yearly mean
yearly sum = ts.resample('Y').sum() # Yearly sum
Visual comparison

import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 1, figsize=(12, 8))

axes[0] .plot(ts.index, ts.values, label='Monthly')
axes[0] .set title('Monthly AirPassengers')
axes[1l] .plot(yearly.index, yearly.values,
axes[l].set title('Yearly Aggregated AirPassengers')
plt.tight layout()

plt.show()

Time-series

600 4

300 4

200

100

450

250

200

150

MONINIY AINFAS5ENQEers

N [|l
FAWAWAY
\ w/\w .

1950 1952 1954 1956 1958 1960
‘fearly Aggregated AirPassengers

1930 1952 19534 19586 1958 1960

label='Yearly Mean')

Trong-Nghia Nguyen

Pandas for Time Series

Pandas for Time Series

e Rolling Statistics with Pandas

@)

@)
©)
©)

Time-series

Rolling mean

Rolling standard deviation

Effect of window size (3, 6, 12)
Connection to NumPy sliding window

600

400 A

300 +

200

100 4

Original

3-month MA
— G-month MA
—— 12-month MA

Rolling Mean with Different Window Sizes

1954 1956 1958 1960

Trong-Nghia Nguyen

Pandas for Time Series
Pandas for Time Series

® ROlllng StatiStiCS Wlth PandaS Rolling Mean with Different Window Sizes

Original
600 3-month MA
— G-month MA

Rolling statistics —— 12-month MA

ts_rolling mean 12 = ts.rolling(window=12) .mean() # 1l2month rollir 500 -

ts_rolling std 12 = ts.rolling(window=12) .std() # 12month rollinc

400 -
Different window sizes
ts_rolling 3 = ts.rolling(window=3) .mean () 300 -
ts_rolling 6 = ts.rolling(window=6) .mean ()
ts_rolling 12 = ts.rolling(window=12) .mean () 200
Visualization 100 -

Plt figure(figsize= (12 6)) l‘)YSO 1‘)'52 19'54 19'50 19'58 19;0

plt.plot(ts.index, ts.values, label='Original', alpha=0.5)
plt.plot(ts_rolling 3.index, ts_rolling 3.values, label='3month MA')
plt.plot(ts_rolling 6.index, ts_rolling 6.values, label='émonth MA')
plt.plot(ts_rolling 12.index, ts_rolling 12.values, label='l2month MA')
plt.legend()

plt.title('Rolling Mean with Different Window Sizes')

plt.show ()

Time-series Trong-Nghia Nguyen

Content

e NumPy Review for Time Series
e Pandas for Time Series
e Technical Indicators and EDA

Time-series Trong-Nghia Nguyen

Technical Indicators and EDA
From SMA to EMA

e Simple Moving Average (SMA): Equal weights for all observations in window.

SMA.”:J,iPe (6)

1=1

e Exponential Moving Average (EMA): More weight to recent observations

EMA,=a P;+(1-a)EMA;_; (7)

Wherea=2/(n+1)

EMA is more responsive to recent changes
SMA is smoother but less reactive
Smoothing any time series data

Trend detection in various domains

Time-series

Trong-Nghia Nguyen

Technical Indicators and EDA
From SMA to EMA $HA vs EMA Comparison

Original
600 1 SMA(12)
— EMA(12)
SMA
sma 12 = ts.rolling(window=12) .mean() S00 1
400 -
EMA
ema 12 = ts.ewm(span=12, adjust=False) .mean()
300 4
Comparison plot —
plt.figure(figsize=(12, 6))
plt.plot(ts.index, ts.values, label='Original’, 100

1950 1952 1954 1956 1958 1960
alpha=0. 3)

plt.plot(sma_12.index, sma_l1l2.values, label='SMA(12)')
plt.plot(ema 12.index, ema 12.values, label='EMA(12)')
plt.legend()

plt.title('SMA vs EMA Comparison')

plt.show ()

Time-series Trong-Nghia Nguyen

Technical Indicators and EDA

Moving Average Convergence Divergence (MACD) Indicator

e Components:
o Fast EMA (typically 12 periods)
o Slow EMA (typically 26 periods)
o MACD line = Fast EMA Slow EMA
o Signal line = EMA(9) of MACD line
e |[nterpretation:
o Momentum indicator
o MACD > Signal: Bullish momentum
o MACD < Signal: Bearish momentum

Time-series Trong-Nghia Nguyen

Technical Indicators and EDA

ArrFassengers with EMAS

MACD Indicator it \

500

Calculate MACD
ema fast = ts.ewm(span=12, adjust=False) .mean /() oo

ema slow = ts.ewm(span=26, adjust=False) .mean /() 300

macd line = ema fast - ema slow 200
signal line = macd line.ewm(span=9, adjust=False) .mean()

104
histogram = macd line - signal line

MACD Indicator
—_— MACD
&0 4 Signal
Visualization Histogram
fig, axes = plt.subplots(2, 1, figsize=(12, 8), sharex=True) ¥ W
axes[0] .plot(ts.index, ts.values, label='AirPassengers') 0 /

axes[0] .set _title('AirPassengers with EMAs') 10 n}f\hj/fn\uf Kk/

axes[0] .1legend ()

axes[l] .plot(macd line.index, macd line.values, label='MACD') 1950 1952 1954 1956 1958 1960
axes[l] .plot(signal_ line.index, signal line.values, label='Signal')

axes[1l] .bar (histogram.index, histogram.values, alpha=0.3, label='Histogram')

axes[1l] .axhline (y=0, color='black', linestyle='--')

axes[l] .set_title('MACD Indicator')

axes[1l] .legend()

plt.tight layout()

plt.show()

Time-series Trong-Nghia Nguyen

Technical Indicators and EDA
Relative Strength Index (RSI) Indicator

e Relative Strength Index (RSI):
o Momentum oscillator measuring speed and magnitude of changes
o Formula: RSI =100 (100/ (1 + RS))
Where RS = Average Gain / Average Loss (over n periods)

e (Calculation:
o Gains and losses over a window (typically 14 periods)
o Separates positive and negative price changes
e Interpretation:
o RSI> 70: Overbought (potential reversal)
o RSI < 30: Oversold (potential reversal)
o RSI=50: Neutral
e NonFinancial lllustration Purpose:
o Demonstrates momentum concepts applicable to any time series
o Useful for identifying extreme values in any domain

Time-series

Trong-Nghia Nguyen

def

Technical Indicators and EDA

RSI Indicator (Conceptual)

calculate_rsi(data, window=14): 100

delta = data.diff()

RSl Indicator

gain = (delta.where (delta > 0, 0)) .rolling(window=window) .mean () 80 1

loss = (-delta.where(delta < 0, 0)) .rolling(window=window) .mean ()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))

return rsi

60 4

[P B B

— RS
=== Qwerbought (70)
=== Owersold (30)

'I.‘:.Il'i o 'I.‘?l‘i! 1‘:]-.5.11- 'I.‘?.EE 'I.‘:.I-I'i.ﬁ 'I.'Q-.EI:I

rsi = calculate_rsi(ts, window=14)

204
Visualization
plt.figure(figsize=(12, 6)) 0
plt.plot(rsi.index, rsi.values, label='RSI')
plt.axhline (y=70, color='r', linestyle='--', label='Overbought (70) ')
plt.axhline (y=30, color='g', linestyle='--', label='Oversold (30) ")
plt.fill between(rsi.index, 70, 100, alpha=0.2, color='red')
plt.fill between(rsi.index, 0, 30, alpha=0.2, color='green')
plt.ylim(0, 100)
plt.title('RSI Indicator')
plt.legend()

plt

.show ()

Time-series

Trong-Nghia Nguyen

Technical Indicators and EDA
Exploratory Data Analysis (EDA)

Line plot of the series

Seasonal patterns identification
Rolling mean and variance analysis
Trend—seasonality decomposition

e Excercise: proceed EDA with AirPassengers dataset

Time-series Trong-Nghia Nguyen

Thank you!

Time-series Trong-Nghia Nguyen

	Slide 1: Python & Time Series Fundamentals
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

